1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
//! This library provides a user-friendly API to program the LED-matrix.
//!
//! The heart of this Library is the [LedMatrix] trait, which provides the API
//! and at the same time abstracts over the physical LED-matrix itself as well
//! as the GUI emulator. Call the function [run] to run your code with an
//! initialized LED-matrix.
#![no_std]
use core::cmp::Ordering;
pub use led_matrix_core::JoystickPosition;
use led_matrix_core::{LedMatrixCore, HEIGHT, WIDTH};
pub mod billboard;
pub mod character;
/// A high-level interface for programming the LED-matrix.
///
/// To update the color of an LED, you can index the `LedMatrix` with a tuple
/// of integers (x, y) in the range `0..8` each.
///
/// After changing the values of one or several LEDs, don't forget to call
/// [`apply`](LedMatrix::apply) to actually apply these changes in a batch.
///
/// Here is the coordinate system visualized:
///
/// ```txt
/// ╭─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────╮
/// │ 7,0 │ 7,1 │ 7,2 │ 7,3 │ 7,4 │ 7,5 │ 7,6 │ 7,7 │
/// ├─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┤
/// │ 6,0 │ 6,1 │ 6,2 │ 6,3 │ 6,4 │ 6,5 │ 6,6 │ 6,7 │
/// ├─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┤
/// │ 5,0 │ 5,1 │ 5,2 │ 5,3 │ 5,4 │ 5,5 │ 5,6 │ 5,7 │
/// ├─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┤
/// │ 4,0 │ 4,1 │ 4,2 │ 4,3 │ 4,4 │ 4,5 │ 4,6 │ 4,7 │
/// ├─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┤
/// │ 3,0 │ 3,1 │ 3,2 │ 3,3 │ 3,4 │ 3,5 │ 3,6 │ 3,7 │
/// ├─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┤
/// │ 2,0 │ 2,1 │ 2,2 │ 2,3 │ 2,4 │ 2,5 │ 2,6 │ 2,7 │
/// ├─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┤
/// │ 1,0 │ 1,1 │ 1,2 │ 1,3 │ 1,4 │ 1,5 │ 1,6 │ 1,7 │
/// ├─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┤
/// │ 0,0 │ 0,1 │ 0,2 │ 0,3 │ 0,4 │ 0,5 │ 0,6 │ 0,7 │
/// ╰─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────╯
/// ```
///
pub trait LedMatrix:
core::ops::Index<(usize, usize), Output = (u8, u8, u8)> + core::ops::IndexMut<(usize, usize)>
{
/// Tell the LED-matrix to display the currently stored color values for
/// each LED.
///
/// If you are drawing in an endless loop, consider calling
/// [sleep_ms](Self::sleep_ms) at some point to slow down the execution.
///
fn apply(&mut self);
/// Set the brightness of the display.
///
/// The display is set at a default brightness of `50` (about 20%).
///
/// This method is a no-op for the GUI emulator.
///
fn set_brightness(&mut self, brightness: u8);
/// Sleep for the specified amount of milliseconds.
///
fn sleep_ms(&mut self, duration: u32);
/// Get a sinus function.
///
/// This is necessary to abstract over hardware and emulator.
///
fn get_sin(&self) -> fn(f32) -> f32;
/// Get the current joystick position.
///
fn joystick_position(&mut self) -> JoystickPosition;
/// Get the current value of the switch.
///
fn switch(&mut self) -> bool;
/// Set every LED to a single color at the same time.
///
/// You still need to call [apply](Self::apply) afterwards.
///
fn fill(&mut self, color: (u8, u8, u8)) {
for x in 0..WIDTH as usize {
for y in 0..HEIGHT as usize {
self[(x, y)] = color;
}
}
}
/// Turn off all LEDs.
///
fn clear(&mut self) {
self.fill((0, 0, 0));
}
/// Set a list of LEDs to a single color.
///
/// LEDs are specified as an iterator of coordinates (x, y).
///
fn draw_coordinates(
&mut self,
coords: &mut dyn Iterator<Item = (usize, usize)>,
color: (u8, u8, u8),
) {
for (x, y) in coords {
self[(x, y)] = color;
}
}
// TODO: draw_line
/// Draw a bitmap file with a color depth of 24 bit.
///
/// bitmap format: <https://en.wikipedia.org/wiki/BMP_file_format>
///
fn draw_bitmap(&mut self, bitmap: &[u8]) {
let color_depth = u16::from_le_bytes(bitmap[28..30].try_into().unwrap());
let bitmap_size = u32::from_le_bytes(bitmap[2..6].try_into().unwrap());
let bitmap_offset = u32::from_le_bytes(bitmap[10..14].try_into().unwrap());
let image_size = u32::from_le_bytes(bitmap[34..38].try_into().unwrap());
let bitmap_height = u16::from_be_bytes(bitmap[22..24].try_into().unwrap()) as u32;
// let upper_left_origin = bitmap_height < 0;
let pic = &bitmap[bitmap_offset as usize..];
let bitmap_width = (image_size / 3) / bitmap_height;
if bitmap_height > HEIGHT as u32 || bitmap_width > WIDTH as u32 {
// TODO: How to debug? println not available on no_std.
// println!(format!(
// "bitmap is larger than matrix: {bitmap_width}x{bitmap_height}"
// ));
}
if (color_depth) != 24 {
panic!("Wrong color-depth ({color_depth}) detected. Use bitmaps with a color-depth of 24 bits.");
}
if (bitmap_size) != 246 {
// TODO: How to debug? println not available on no_std.
// println!("The bitmap size is different than expected. The image may be defective.");
}
for x in 0..WIDTH as usize {
for y in 0..HEIGHT as usize {
let i = (y * WIDTH as usize + x) * 3;
let y = HEIGHT as usize - y - 1;
self[(x, y)] = (pic[i + 2], pic[i + 1], pic[i]);
}
}
}
/// Draw a frame of a horizontal billboard at a specified offset.
///
/// Construct such a billboard with [`billboard::horizontal`].
///
/// This function only draws a single frame, you probably want to
/// loob over offsets and draw each frame with a desired delay using
/// [sleep_ms](Self::sleep_ms).
///
/// See the module documentation of [billboard] for more information.
///
fn draw_horizontal_billboard_frame(&mut self, billboard: billboard::Billboard, offset: usize) {
for (x, column) in (offset..offset + WIDTH as usize).enumerate() {
for y in 0..HEIGHT as usize {
self[(x, y)] = match billboard
.get(column)
.map(|col| col[HEIGHT as usize - y - 1])
{
Some(true) => color::WHITE,
_ => color::BLACK,
}
}
}
}
/// Draw a frame of a vertical billboard at a specified offset.
///
/// Construct such a billboard with [`billboard::vertical`].
///
/// This function is analogous to [draw_horizontal_billboard_frame](Self::draw_horizontal_billboard_frame).
///
fn draw_vertical_billboard_frame(&mut self, billboard: billboard::Billboard, offset: usize) {
for (y, row) in (offset..offset + HEIGHT as usize).enumerate() {
let y = HEIGHT as usize - y - 1;
for x in 0..WIDTH as usize {
self[(x, y)] = match billboard.get(row).map(|row| row[x]) {
Some(true) => color::WHITE,
_ => color::BLACK,
}
}
}
}
/// Draw a frame of a strip of text at a specified offset.
///
/// Construct such a strip of text with [`character::convert_str`].
///
/// Like [draw_horizontal_billboard_frame](Self::draw_horizontal_billboard_frame),
/// this function only draws a single frame. You probably want to loob
/// over offsets and draw each frame with a desired delay using [sleep_ms](Self::sleep_ms).
///
fn draw_text_billboard_frame(
&mut self,
text: &[character::Character],
frame_offset: usize, // colors=ColorTable.WHITE, delay_ms=50, direction="left"
) {
// let length: usize = text.iter().map(|c| c.width).sum::<usize>() - 1;
// TODO: custom color support
// // use same color for all bitmaps if only one color is supplied
// if not isinstance(colors, list):
// colors = [colors] * len(bitmaps)
self.clear();
for &c in text.iter() {
if c.offset + c.width < frame_offset {
continue;
} else if frame_offset + WIDTH as usize - 1 < c.offset {
break;
}
let mut coords = c.coordinates.iter().copied().filter_map(|(mut x, y)| {
// remove out-of-bounds coordinates and apply offset
match frame_offset.cmp(&c.offset) {
Ordering::Less => {
x += c.offset - frame_offset;
if x >= WIDTH as usize {
// Character is partially in frame, but this
// specific pixel is beyond the right border of
// the frame.
return None;
}
}
Ordering::Equal => {}
Ordering::Greater => {
let offset_diff = frame_offset - c.offset;
if offset_diff > x {
// Character is partially in frame, but this
// specific pixel is beyond the left border of
// the frame.
return None;
}
x -= offset_diff;
}
}
Some((x, y))
});
self.draw_coordinates(&mut coords, color::WHITE);
}
}
}
impl<T: LedMatrixCore> LedMatrix for T {
fn apply(&mut self) {
self.apply()
}
fn set_brightness(&mut self, brightness: u8) {
self.set_brightness(brightness)
}
fn sleep_ms(&mut self, duration: u32) {
self.sleep_ms(duration)
}
fn get_sin(&self) -> fn(f32) -> f32 {
self.get_sin()
}
fn joystick_position(&mut self) -> JoystickPosition {
self.joystick_position()
}
fn switch(&mut self) -> bool {
self.switch()
}
}
/// Runs your program with an initialized [LedMatrix].
///
/// The implementation (hardware or emulator) is automatically chosen based on
/// the compilation target.
///
/// This run function is a slightly leaky abstraction, unfortunately. The
/// emulator is built with egui, which must be run on the main thread. However,
/// the library API want to give the user control over the rendering loop. This
/// means the users code must be moved to a separate thread.
///
pub fn run<F: FnOnce(&mut dyn LedMatrix) + Send + 'static>(f: F) -> ! {
#[cfg(target_os = "none")]
{
led_matrix_bsp::run(|mut matrix| f(&mut matrix))
}
#[cfg(not(target_os = "none"))]
{
#[cfg(not(feature = "tui"))]
{
led_matrix_gui::run(|mut matrix| f(&mut matrix))
}
#[cfg(feature = "tui")]
{
led_matrix_tui::run(|mut matrix| f(&mut matrix))
}
}
}
/// Contains a number of predefined color values.
///
/// You can set an LED to one of these colors like this:
///
/// ```
/// *matrix.get_mut(2, 6) = color::PURPLE;
/// ```
pub mod color {
pub const YELLOW: (u8, u8, u8) = (255, 255, 0);
pub const ORANGE: (u8, u8, u8) = (255, 165, 0);
pub const RED: (u8, u8, u8) = (255, 0, 0);
pub const PURPLE: (u8, u8, u8) = (128, 0, 128);
pub const PINK: (u8, u8, u8) = (255, 0, 255);
pub const BLUE: (u8, u8, u8) = (0, 0, 255);
pub const TEAL: (u8, u8, u8) = (0, 128, 128);
pub const AQUA: (u8, u8, u8) = (0, 255, 255);
pub const LIME: (u8, u8, u8) = (0, 255, 0);
pub const GREEN: (u8, u8, u8) = (0, 128, 0);
pub const LIGHT_GREY: (u8, u8, u8) = (119, 136, 153);
pub const GREY: (u8, u8, u8) = (100, 100, 100);
pub const BROWN: (u8, u8, u8) = (139, 69, 19);
pub const LIGHT_BROWN: (u8, u8, u8) = (205, 133, 63);
pub const WHITE: (u8, u8, u8) = (255, 255, 255);
pub const BLACK: (u8, u8, u8) = (0, 0, 0);
}
/// Contains a number of predefined bitmaps.
pub mod bitmap {
pub static APPLE: &[u8] = include_bytes!("../bitmaps/apple.bmp");
pub static BAT: &[u8] = include_bytes!("../bitmaps/bat.bmp");
pub static BIG_IMG: &[u8] = include_bytes!("../bitmaps/big_img.bmp");
pub static BIRD: &[u8] = include_bytes!("../bitmaps/bird.bmp");
pub static CHICKEN: &[u8] = include_bytes!("../bitmaps/chicken.bmp");
pub static CRAB: &[u8] = include_bytes!("../bitmaps/crab.bmp");
pub static DINO: &[u8] = include_bytes!("../bitmaps/dino.bmp");
pub static DRINK: &[u8] = include_bytes!("../bitmaps/drink.bmp");
pub static DUCK: &[u8] = include_bytes!("../bitmaps/duck.bmp");
pub static ERLENMEYER: &[u8] = include_bytes!("../bitmaps/erlenmeyer.bmp");
pub static FOX: &[u8] = include_bytes!("../bitmaps/fox.bmp");
pub static MC_CREEPER: &[u8] = include_bytes!("../bitmaps/mc_creeper.bmp");
pub static MC_PIG: &[u8] = include_bytes!("../bitmaps/mc_pig.bmp");
pub static MOB_1: &[u8] = include_bytes!("../bitmaps/mob_1.bmp");
pub static MOUSE: &[u8] = include_bytes!("../bitmaps/mouse.bmp");
pub static MUSHROOM: &[u8] = include_bytes!("../bitmaps/mushroom.bmp");
pub static PIKACHU: &[u8] = include_bytes!("../bitmaps/pikachu.bmp");
pub static RABBIT: &[u8] = include_bytes!("../bitmaps/rabbit.bmp");
pub static SKULL: &[u8] = include_bytes!("../bitmaps/skull.bmp");
pub static TEST_GRID: &[u8] = include_bytes!("../bitmaps/test_grid.bmp");
pub static WINE: &[u8] = include_bytes!("../bitmaps/wine.bmp");
}
/// Returns an iterator over the coordinates of all LEDs. Useful for avoiding
/// nested loops.
pub fn all_led_coordinates() -> impl Iterator<Item = (usize, usize)> {
(0..HEIGHT as usize).flat_map(|y| (0..WIDTH as usize).map(move |x| (x, y)))
}